由于異步電機的動態(tài)數(shù)學模型是一個高階、非線性、強耦合的多變量系統(tǒng)。上世紀70年代西門子工程師F.Blaschke首先提出異步電機矢量控制理論來解決交流電機轉矩控制問題。矢量控制實現(xiàn)的基本原理是通過測量和控制異步電動機定子電流矢量,根據(jù)磁場定向原理分別對異步電動機的勵磁電流和轉矩電流進行控制,從而達到控制異步電動機轉矩的目的。具體是將異步電動機的定子電流矢量分解為產生磁場的電流分量 (勵磁電流) 和產生轉矩的電流分量 (轉矩電流) 分別加以控制,并同時控制兩分量間的幅值和相位,即控制定子電流矢量,所以稱這種控制方式稱為矢量控制方式。簡單的說,矢量控制就是將磁鏈與轉矩解耦,有利于分別設計兩者的調節(jié)器,以實現(xiàn)對交流電機的高性能調速。矢量控制方式又有基于轉差頻率控制的矢量控制方式、無速度傳感器矢量控制方式和有速度傳感器的矢量控制方式等。這樣就可以將一臺三相異步電機等效為直流電機來控制,因而獲得與直流調速系統(tǒng)同樣的靜、動態(tài)性能。矢量控制算法已被廣泛地應用在普傳公司的普傳高性能矢量變頻器上。
采用矢量控制方式的通用變頻器不僅可在調速范圍上與直流電動機相匹配,而且可以控制異步電動機產生的轉矩。由于矢量控制方式所依據(jù)的是準確的被控異步電動機的參數(shù),有的通用變頻器在使用時需要準確地輸入異步電動機的參數(shù),有的通用變頻器需要使用速度傳感器和編碼器。鑒于電機參數(shù)有可能發(fā)生變化,會影響變頻器對電機的控制性能,目前新型矢量控制通用變頻器中已經具備異步電動機參數(shù)自動檢測、自動辨識、自適應功能,帶有這種功能的通用變頻器在驅動異步電動機進行正常運轉之前可以自動地對異步電動機的參數(shù)進行辨識,并根據(jù)辨識結果調整控制算法中的有關參數(shù),從而對普通的異步電動機進行有效的矢量控制。
以異步電動機的矢量控制為例:
它首先通過電機的等效電路來得出一些磁鏈方程,包括定子磁鏈,氣隙磁鏈,轉子磁鏈,其中氣息磁鏈是連接定子和轉子的.一般的感應電機轉子電流不易測量,所以通過氣息來中轉,把它變成定子電流.
然后,有一些坐標變換,首先通過3/2變換,變成靜止的d-q坐標,然后通過前面的磁鏈方程產生的單位矢量來得到旋轉坐標下的類似于直流機的轉矩電流分量和磁場電流分量,這樣就實現(xiàn)了解耦控制,加快了系統(tǒng)的響應速度.
最后再經過2/3變換,產生三相交流電去控制電機,這樣就獲得了良好的性能.
矢量控制(VC)方式:
矢量控制變頻調速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,
等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉矩成正比的電樞電流),然后模仿直流電動機的控制方法,求得直流電動機的控制量,經過相應的坐標反變換,實現(xiàn)對異步電動機的控制。其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現(xiàn)正交或解耦控制。
綜合以上:矢量控制無非就四個知識:等效電路、磁鏈方程、轉矩方程、坐標變換(包括靜止和旋轉)。大連普傳科技.