華億步進
級別: *
|
步進電機工作原理; 步進電機是一種感應電機,它的工作原理是利用電子電路,將直流電變成分時供電的,多相時序控制電流,用這種電流為步進電機供電,步進電機才能正常工作,驅動器就是為步進電機分時供電的,多相時序控制器 雖然步進電機已被廣泛地應用,但步進電機并不能象普通的直流電機,交流電機在常規(guī)下使用。它必須由雙環(huán)形脈沖信號、功率驅動電路等組成控制系統(tǒng)方可使用。因此用好步進電機卻非易事,它涉及到機械、電機、電子及計算機等許多專業(yè)知識。 步進電機作為執(zhí)行元件,是機電一體化的關鍵產品之一, 廣泛應用在各種自動化控制系統(tǒng)中。隨著微電子和計算機技術的發(fā)展,步進電機的需求量與日俱增,在各個國民經濟領域都有應用。 編輯本段分類 現在比較常用的步進電機包括反應式步進電機(VR)、永磁式步進電機(PM)、混合式步進電機(HB)和單相式步進電機等。 永磁式步進電機 永磁式步進電機一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度; 永磁式步進電動機輸出力矩大,動態(tài)性能好,但步距角大。 反應式步進電機 反應式步進電機一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但噪聲和振動都很大。反應式步進電機的轉子磁路由軟磁材料制成,定子上有多相勵磁繞組,利用磁導的變化產生轉矩。 反應式步進電動機結構簡單,生產成本低,步距角小;但動態(tài)性能差。 混合式步進電機 混合式步進電動機綜合了反應式、永磁式步進電動機兩者的優(yōu)點,它的步距角小,出力大,動態(tài)性能好,是目前性能最高的步進電動機。它有時也稱作永磁感應子式步進電動機。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的應用最為廣泛。 編輯本段變頻器對步進電機的節(jié)能改造 三相步進電機專用變頻器特點: 步進電機變頻器 ■低頻轉矩輸出180% ,低頻運行特性良好 ■輸出頻率最大600Hz,可控制高速電機 ■全方位的偵測保護功能(過壓、欠壓、過載)瞬間停電再起動 ■加速、減速、動轉中失速防止等保護功能 ■電機動態(tài)參數自動識別功能,保證系統(tǒng)的穩(wěn)定性和精確性 ■高速停機時響應快 ■豐富靈活的輸入、輸出接口和控制方式,通用性強 ■采用SMT全貼裝生產及三防漆處理工藝,產品穩(wěn)定度高 ■全系列采用最新西門子IGBT功率器件,確保品質的高質量 編輯本段基本原理 通常電機的轉子為永磁體,當電流流過定子繞組時,定子繞組產生一矢量磁場。該磁場會帶動轉子旋轉一角度,使得轉子的一對磁場方向與定子的磁場方向一致。當定子的矢量磁場旋轉一個角度。轉子也隨著該磁場轉一個角度。每輸入一個電脈沖,電動機轉動一個角度前進一步。它輸出的角位移與輸入的脈沖數成正比、轉速與脈沖頻率成正比。改變繞組通電的順序,電機就會反轉。所以可用控制脈沖數量、頻率及電動機各相繞組的通電順序來控制步進電機的轉動。 反應式步進電機 由于反應式步進電機工作原理比較簡單。下面先敘述三相反應式步進電機原理。 1、結構: 電機轉子均勻分布著很多小齒,定子齒有三個勵磁繞阻,其幾何軸線依次分別與轉子齒軸線錯開。 0、1/3て、2/3て,(相鄰兩轉子齒軸線間的距離為齒距以て表示),即A與齒1相對齊,B與齒2向右錯開1/3て,C與齒3向右錯開2/3て,A‘與齒5相對齊,(A‘就是A,齒5就是齒1)下面是定轉子的展開圖: 2、旋轉: 如A相通電,B,C相不通電時,由于磁場作用,齒1與A對齊,(轉子不受任何力以下均同)。 如B相通電,A,C相不通電時,齒2應與B對齊,此時轉子向右移過1/3て,此時齒3與C偏移為1/3て,齒4與A偏移(て-1/3て)=2/3て。 如C相通電,A,B相不通電,齒3應與C對齊,此時轉子又向右移過1/3て,此時齒4與A偏移為1/3て對齊。 如A相通電,B,C相不通電,齒4與A對齊,轉子又向右移過1/3て 這樣經過A、B、C、A分別通電狀態(tài),齒4(即齒1前一齒)移到A相,電機轉子向右轉過一個齒距,如果不斷地按A,B,C,A……通電,電機就每步(每脈沖)1/3て,向右旋轉。如按A,C,B,A……通電,電機就反轉。 由此可見:電機的位置和速度由導電次數(脈沖數)和頻率成一一對應關系。而方向由導電順序決定。 不過,出于對力矩、平穩(wěn)、噪音及減少角度等方面考慮。往往采用A-AB-B-BC-C-CA-A這種導電狀態(tài),這樣將原來每步1/3て改變?yōu)?/6て。甚至于通過二相電流不同的組合,使其1/3て變?yōu)?/12て,1/24て,這就是電機細分驅動的基本理論依據。 不難推出:電機定子上有m相勵磁繞阻,其軸線分別與轉子齒軸線偏移1/m,2/m……(m-1)/m,1。并且導電按一定的相序電機就能正反轉被控制——這是旋轉的物理條件。只要符合這一條件我們理論上可以制造任何相的步進電機,出于成本等多方面考慮,市場上一般以二、三、四、五相為多。 3、力矩: 電機一旦通電,在定轉子間將產生磁場(磁通量Ф)當轉子與定子錯開一定角度產生力 F與(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br為磁密,S為導磁面積 F與L*D*Br成正比 L為鐵芯有效長度,D為轉子直徑 Br=N•I/R N•I為勵磁繞阻安匝數(電流乘匝數)R為磁阻。 力矩=力*半徑 力矩與電機有效體積*安匝數*磁密 成正比(只考慮線性狀態(tài)) 因此,電機有效體積越大,勵磁安匝數越大,定轉子間氣隙越小,電機力矩越大,反之亦然。 感應子式步進電機 1、特點: 感應子式與傳統(tǒng)的反應式相比,結構上轉子加有永磁體,以提供軟磁材料的工作點,而定子激磁只需提供變化的磁場而不必提供磁材料工作點的耗能,因此該電機效率高,電流小,發(fā)熱低。因永磁體的存在,該電機具有較強的反電勢,其自身阻尼作用比較好,使其在運轉過程中比較平穩(wěn)、噪音低、低頻振動小。 感應子式某種程度上可以看作是低速同步的電機。一個四相電機可以作四相運行,也可以作二相運行。(必須采用雙極電壓驅動),而反應式電機則不能如此。例如:四相,八相運行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍運行方式.不難發(fā)現其條件為C=,D=. 一個二相電機的內部繞組與四相電機完全一致,小功率電機一般直接接為二相,而功率大一點的電機,為了方便使用,靈活改變電機的動態(tài)特點,往往將其外部接線為八根引線(四相),這樣使用時,既可以作四相電機使用,可以作二相電機繞組串聯或并聯使用。 2、分類 感應子式電機以相數可分為:二相電機、三相電機、四相電機、五相電機等。以機座號(電機外徑)可分為:42BYG(BYG為感應子式步進電機代號)、57BYG、86BYG、110BYG、(國際標準),而像70BYG、90BYG、130BYG等均為國內標準。 3、步進電機的靜態(tài)指標術語 相數:產生不同對極N、S磁場的激磁線圈對數。常用m表示。 拍數:完成一個磁場周期性變化所需脈沖數或導電狀態(tài)用n表示,或指電機轉過一個齒距角所需脈沖數,以四相電機為例,有四相四拍運行方式即AB-BC-CD-DA-AB,四相八拍運行方式即 A-AB-B-BC-C-CD-D-DA-A. 步距角:對應一個脈沖信號,電機轉子轉過的角位移用θ表示。θ=360度(轉子齒數J*運行拍數),以常規(guī)二、四相,轉子齒為50齒電機為例。四拍運行時步距角為θ=360度/(50*4)=1.8度(俗稱整步),八拍運行時步距角為θ=360度/(50*8)=0.9度(俗稱半步)。 定位轉矩:電機在不通電狀態(tài)下,電機轉子自身的鎖定力矩(由磁場齒形的諧波以及機械誤差造成的) 靜轉矩:電機在額定靜態(tài)電作用下,電機不作旋轉運動時,電機轉軸的鎖定力矩。此力矩是衡量電機體積(幾何尺寸)的標準,與驅動電壓及驅動電源等無關。 雖然靜轉矩與電磁激磁安匝數成正比,與定齒轉子間的氣隙有關,但過分采用減小氣隙,增加激磁安匝來提高靜力矩是不可取的,這樣會造成電機的發(fā)熱及機械噪音。 4、動態(tài)指標及術語: 1、步距角精度: 步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。 2、失步: 電機運轉時運轉的步數,不等于理論上的步數。稱之為失步。 3、失調角: 轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,采用細分驅動是不能解決的。 4、最大空載起動頻率: 電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。 5、最大空載的運行頻率: 電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。 6、運行矩頻特性: 電機在某種測試條件下測得運行中輸出力矩與頻率關系的曲線稱為運行矩頻特性,這是電機諸多動態(tài)曲線中最重要的,也是電機選擇的根本依據。如下圖所示: 其它特性還有慣頻特性、起動頻率特性等。 電機一旦選定,電機的靜力矩確定,而動態(tài)力矩卻不然,電機的動態(tài)力矩取決于電機運行時的平均電流(而非靜態(tài)電流),平均電流越大,電機輸出力矩越大 |
---|---|
|